Ch. 1.2-1.3
Define function:

Ch. 1.2

Define Domain:

Define Range:

Ch. 1.2
Which tables of values represent a function?
a.

\mathbf{x}	\mathbf{y}
4	7
-2	-3
5	9
8	1
	-2

b.

x	y
4	-1
-2	0
4	7
6	3

c.

x	y
4	-2
5	5
1	-2
3	3

Ch. 1.2
Mike decided to start his own lawn care business this month. Mike spent $\$ 4500$ to buy equipment, and he spends $\mathbf{\$ 1 . 5 0}$ in gasoline every hour he operates the equipment. Write an equation to model Mike's total cost of operating his business.

$\mathrm{A}, \mathrm{C}, \& \mathrm{D}$

A function is a relation where each input is paired with exactly one output

Domain is the set of all inputs

$$
f(x)=1.50 x+4500
$$

Intercepts are the locations where the graph crosses each of the axes. The x-intercept is the locations where the graph crosses the x-axis. The y-intercept is the locations where the graph crosses the y-axis.

Which would be the most likely next algebraic step required to solve the following equations?

A. $8 x=40 ; \frac{8 x}{8}=\frac{40}{8}$ (DIVISION)
B. $6 x-4=14$

$+4+4$

(ADDITION)
C. $\begin{gathered}\underbrace{3 x}_{-}+2-5 x \\ -2 x+2=12\end{gathered}$
(COMBINE LIKE TERMS)

Rate of change is the slope for a line ar equation
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, rise over run
For a non-line ar grapf, you can still use the slope formula, but the rate of change will not be constant
Rate of change $=\frac{\text { Change in } y}{\text { Change in } x}$
Ch. 1.8

A line that most closely follows a trend in data is called the

Ch. 1.2
Given the table of values, state the domain and range.

x	2	-1	3	5	9
y	-7	\square	8	-6	-2
-1					

Ch. 1.8

Given the scatter plot, find the equation of the best-fit line.

Ch. 1.2

On a trip, you drive your car at a constant rate of $55 \mathbf{m p h}$.

Hime(hours)	1	2	3	4
distance(miles)	55	110	165	220

State the independent and dependent variables.

$$
f(x)=2 x-3
$$

Best-fitting line

Independent Variable: Time

Dependent Variable:
Distance

Domain: $\{-1,2,3,5,9\}$

$$
\text { Range: }\{-7,-6,-2,0,8\}
$$

Ch. 2.1-2.3
Ch. 2.4

Perform the given operation:
A. $(x+2)(x-3)$
B. $\left(2 x^{2}+3 x\right)+(5 x-4)$
C. $\left(2 x^{2}+3 x\right)-(5 x-4)$
D. $\left(6 x^{3}+4 x^{2}+8 x\right) /(2 x)$

Expand the following:
A. $(x+1)^{2}$
B. $(x+1)^{3}$
C. $(x+1)^{4}$

Ch. 2.2
Find the volume of the box:

To expand a binomial, you can either multiply eacfort, or use Pascal's Triangle
A. $x^{2}+2 x+1$
B. $x^{3}+3 x^{2}+3 x+1$
c. $x^{4}+4 x^{3}+6 x^{2}+4 x+1$
A. Multiplication $x^{2}-x-6$
B. Addition $2 x^{2}+8 x-4$
C. Subtraction $2 x^{2}-2 x+4$
\mathcal{D}. Division $3 x^{2}+2 x+4$

Volume $=$ Lengtf x width x height

Volume $=(2 x)(x)(x+4)$

$$
=2 x^{3}+8 x^{2}
$$

 The binomial theorem enables you to expand a power of a Ginomial without having to do $\mathcal{F O} I L$ for hours.

Let n be a positive integer.
$(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}=\binom{n}{0} x^{n} y^{0}+\binom{n}{1} x^{n-1} y^{1}+\ldots+\binom{n}{n-1} x^{1} y^{n-1}+\binom{n}{n} x^{0} y^{n}$

Describe the transformations of $a, 6, f, \forall K$.

$$
y=a(b x-h)^{2}+k
$$

Ch. 2.5-2.9

Factor the following:
A. By GCF: $8 x^{3}+16 x^{2}+24 x$
B. By Grouping: $x^{2}+4 x-3 x-12$
C. Quadratic: $x^{2}+5 x+6$
D. Cubic: $x^{3}+3 x^{2}+3 x+1$

Solve the following:
A. $x^{2}+7 x+12=0$
B. $x^{2}-16=0$
c. $x^{2}-6 x-7=0$
D. $x^{2}=18$

Zeros are solutions to an equation, where $\chi=0$.
These solutions cross the x-axis.

```
a:vertical stretcha>1
    verticalcompression 0<a<1
    -a is a reflection over the x-axis
6:-6 is a reflection over the y-axis
h:Gorizontalskift
    x +h moves left, }x-\hbar\mathrm{ moves right
k:verticalshift
    k>0 moves up, }<<0\mathrm{ moves down
```

Solutions

$\underline{\text { Factors }}$

A. $8 x\left(x^{2}+2 x+3\right)$
B. $(x-3)(x+4)$
C. $(x+3)(x+2)$
D. $(x+1)^{3}$

Ch. 2.1

Describe the Following:
A. Monomial
B. Binomial
C. Trinomial

Ch. 1-3
Matching

1. $f(x)=x$
A. Quadratic
2. $f(x)=x^{2}$
B. Absolute Value
3. $f(x)=x^{3}$
C. Rational
4. $f(x)=\sqrt{x}$
D. Cubic
5. $f(x)=|x|$
E. Line ar
6. $f(x)=\frac{1}{x}$
F. Radical

Ch. 1-3 Matcfing

1. $f(x)=x$
2. $f(x)=x^{2}$
3. $f(x)=x^{3}$
4. $f(x)=\sqrt{x}$
5. $f(x)=|x|$
6. $f(x)=\frac{1}{x}$

Ch. 3.12
Which equations show lines that are parallel, perpendicular or neither?
A.

$$
\begin{aligned}
& y=-2 x+1 \\
& y=\frac{1}{2} x-2
\end{aligned}
$$

B.
C.
$y=-3 x+1$
$y=-3 x$

$$
\begin{aligned}
& y=\frac{2}{3} x+5 \\
& y=\frac{3}{2} x+3
\end{aligned}
$$

1. E-no curves
2. $\mathcal{D}-1$ u-turn
3. $\mathcal{B}-2$ u-turns
4. $\mathcal{A}-1 / 2$ of a side ways quadratic
5. \mathcal{F}-v-shaped graph
6. $C-2$ parts that do not touch

$$
y=m x+b
$$

A. Perpendicular because the slopes are negative reciprocals
B. Neither
C. Parallel because each line has the same slope
A. Monomial-Contains 1 term Ex. $3 x$
B. Binomial-Contains 2 terms Ex. $\quad 4 \chi+7$
C. Trinomial-Contains 3 terms Ex. $\quad x^{2}-4 x+3$

1. \mathcal{E}
2. \mathcal{A}
3. \mathcal{D}
4. \mathcal{F}
5. \mathcal{B}
6. C

Ch. 3.5
Solve the following:
ค. $2 \sqrt{x+1}=8$
B. $\sqrt{3 x}-4=2$
C. $\sqrt{x+2}=x+2$
D. $\sqrt{-1-x}=x+3$

Determine the symmetry of the graphs as either $O d d$, Even or \mathcal{N} either.

A.
B.

C.

Ch. 3.4

Simplify the following:
A. $\sqrt{288 x^{2} y^{3}} 212 x y$
g. $\sqrt{8}+\sqrt{18}-\sqrt{2}$
A. Odd - Symmetric about the origin, Rotational symmetry
B. Neitfer - no symmetry
C. Even-Symmetry about the y-axis, Reflected over the y-axis

To simplify radicals, make a factor tree. Look for perfect square factors and le ave any factor that is not a perfect square in the radical
ม. $12 x y \sqrt{2 y}$
B. $4 \sqrt{2}$

Toget rid of a square root, get the square root by itself and square both sides
A. $x=15$
B. $x=12$
C. $x=-1, x=-2$
D. $x=-2$
$x=-5$ is an extrane ous solution

End $\mathcal{B e}$ favior - The directions the arrows point at either end of a graph Max. - the fighest point on a graph Min. - the lowest point on a graph Increasing - Area where the graph is rising from left to right
Decreasing - Area where the graph is falling from left to right

To subtract, you must have like denominators, then distribute the subtraction sign before combining like terms. Do not forget to simplify if possible.
$\frac{5(3 x+1)}{5(4 x)}-\frac{4 x(2)}{4 x(5)}=\frac{15 x+5}{20 x}-\frac{8 x}{20 x}=\frac{7 x+5}{20 x}$

Each radical has 2 parts, the whole number and the radical. To find a conjugate, change the sign on the radical part.
$a+\sqrt{b}$ and $a-\sqrt{b}$ are radicalconjugates.
Ex. $3+\sqrt{2}$ and $3-\sqrt{2}$

Ch. 3.9	Ch. 3.9
Multiply the Rational Expression $\frac{3 x+1}{6} \times \frac{x+2}{3 x}$	Divide the Rational Expression $\frac{x^{2}+3 x+2}{x+1} \div \frac{x^{2}+4 x+4}{x+3}$
Ch.4.8	Ch. 4.7
Find the excluded values or restrictions. $\frac{x^{2}+4 x+8}{x^{2}+5 x+6}$	How do you find the distance from a Point to a Line?

To divide, multiply by the reciprocal of the second fraction. Do not forget to simplify if possible.

$$
\frac{5(3 x+1)}{5(4 x)}-\frac{4 x(2)}{4 x(5)}=\frac{15 x+5}{20 x}-\frac{8 x}{20 x}=\frac{7 x+5}{20 x}
$$

To multiply, multiply across, remember the distributive. Do not forget to simplify if possible.

$$
\frac{(3 x+1) \cdot(x+2)}{6(3 x)}=\frac{3 x^{2}+7 x+2}{18 x}
$$

Find the length of the segment that begins at the point given and is perpendicular to the line.

Factor the denominator and seteach factor to zero.

$$
\begin{gathered}
(x+2)=0 \text { and }(x+3)=0 \\
x \neq-2 \quad \text { and } \quad x \neq-3
\end{gathered}
$$

Ch. 4
 Describe Each Pair of Angles.

Ch. 4
Classify each Triangle based on its sides.

B.

C.
\square

Ch. 4
Classify each Triangle based on its angles.

A. Scalene Triangle - No Equal Sides
 B. I sosceles Triangle - Exactly 2 Equal Sides C. Equilateral Triangle - All Equal Sides

A. Complementary Angles (2 angles that sum to 90°)
B. SUpplementary Angles
(2 angles that sum to 180°)
C. Vertical Angles
(2 angles across from each other and $=$)

In a right triangle, the side opposite the right angle is known as the hypotenuse.

A. Right Triangle - Has One Right Angle
B. Acute Triangle - All Angles are Acute (less than 90°)
C. Obtuse Triangle - Has One Obtuse Angle (greater than 90)

Using the Pythagorean Theorem

Find the distance between the points $\mathrm{A}(-3,2)$ and $\mathrm{B}(2,5)$.

Use the Pythagorean Theorem.

$$
\begin{aligned}
& \begin{array}{l}
3^{2}+5^{2}=c^{2} \\
9+25=c^{2} \\
34=c^{2}
\end{array} \quad \begin{array}{c}
\\
34 \\
5.83 \\
\hline
\end{array}{ }^{2}=c
\end{aligned}
$$

$$
\begin{aligned}
& 60^{2}+80^{2}=c^{2} \\
& 3600+6400=c^{2} \\
& 10000=c^{2} \\
& 100=c
\end{aligned}
$$

A. Ray $\overrightarrow{G H}_{\text {(Halfo of } \mathrm{f} \text { ine, one end point) }}$
B. Line $\overrightarrow{I J}$ or $\overrightarrow{J I}_{\text {(Striadth one dimension) }}$
C. Segment $\overline{K L}$ or $\overline{L K}$
(Piece of a line, two end points)
D. Point M
(Location, 0 dimensions)

1. What theorem is the Distance Formula based on?

PYTHAGOREAN THEOREM
2. State the Distance Formula.
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
3. Using the distance formula, find the distance between the points $\mathrm{A}(-3,2)$ and $\mathrm{B}(2,5)$.
$d=\sqrt{(2--3)^{2}+(5-2)^{2}}$
$d=\sqrt{(5)^{2}+(3)^{2}}=\sqrt{25+9}=\sqrt{34} \approx 5.83$

Point Y is between the points B and E. If BY $=6$ and $B E=10$, then what is the length of $Y E$?

Given that point O is benveen points B and K. Which postulate states that $\mathrm{BO}+O K=B K$

SEGMENT ADDITION POSTULATE
A. Right Angle - Exactly 90°
B. Acute Angle - Less than 90°
C. Obtuse Angle - Greater than 90°

Peint: Location, 0-dimensions,
L \downarrow NE Straight, 1-Dimension, forever in both Directions
$P \triangle$ ane : Flat, 2- dimensions, like a page of paper that is infinitely wide and long
$R \wedge Y$: half a line, one end point
SECMENT : piece of a line, two endpoints
Cootinear : All points that lie on the same line are collinear (any 2 points must be collinear)

LONRAll points that lie on the same plane are coplanar (any 3 points must be coplanar)

Describe the difference between a postulate and a theorem. A postulate or an axiom is a rule that is accepted without proof where as theorems is a rule that must be proven.

Describe the difference between equals ($=$) and congruent $(\underset{\cong}{\cong})$.
Equals suggests that two numeric values are the same where as congruent suggests that two geometric figures are the same.

| Ch. 4.2 |
| :--- | :--- |
| Find a counterexample: |

A. All trees loose their leaves.
B. I always have school on Mondays.

Ch. 4.4
Determine if the statement uses inductive or deductive reasoning, what is the difference?
A. You ran a mile yesterday, 2 miles today and 3 miles tomorrow. You conclude you will be running 30 miles by the end of the month.
B. You use the rise of 12 and run of 3 between two points on a line and conclude the slope is 4.

Ch. 4.2

How can the Law of DETACHMENT be used with the following statements?

1) If you stayed up late last night then you will be tired today.
2) Chris stayed up late last night.

Ch. 4.2

Write an if/then statement for the following:

When it is raining, I use an umbrella.

Chris will be tired today.

Possible counterexamples:

A. Evergreens/Fir trees do not loose their leaves.
\mathcal{B}. I do not have scfool on Mondays in the summer or on folidays.
A. Inductive
B. Deductive

Inductive: Ulses patterns and observations to form a conjecture.

Deductive: Ulses facts, properties, definitions and logic to form an argument.

Ch. 4.3

What is the CONVERSE of the following statement? If the a geometric solid has 8 faces then the geometric solid is called an octahedron.

What is the INVERSE of the following statement?
If a figure is a rectangle then the figure has four sides.

Ch. 4.3
The following statement represents $\mathbf{p} \Rightarrow \mathbf{q}$.
If it is a fish then it can swim.

What would the statement $\mathbf{q} \Rightarrow \sim \mathbf{p}$ be?

Ch. 4.3
What is the CONTRAPOSITIVE of the following statement?
If a triangle has exactly two congruent sides then the triangle is an isosceles triangle.

If the following is the INVERSE what was the original CONDITIONAL statement?
If a student is not a full-time student at Phoenix then the student rides a yellow school bus.

Ch. 4.4
How can the Law of SYLLOGISM be used with the following statements?

1) If you laugh then you feel better.
2) If you watch a comedy then you will laugh.

The CONTRAPOSITIVE :

If the triangle is not an isosceles triangle then a triangle does not have exactly two congruent sides.

The original CONDITIONAL statement:
If a student is a full-time student at Phoenix then the student does not ride a yellow school bus.

The CONVERSE:
If the geometric solid is called an octahedron then the a geometric solid has 8 faces.

The INVERSE:
If a figure is not a rectangle then the figure does not have four sides.

The following statement represents $\mathbf{p} \Rightarrow \mathbf{q}$.

If you watch a comedy then you feel better.

If it is a fish then it can swim. What would the statement $\mathbf{q} \Rightarrow \sim \mathbf{p}$ be?

If it can swim then it is not a fish.

A. Reflexive Prop. 7
B. Symmetric Prop. 3
C. Transitive Prop. 4
D.Distributive Prop. 5
E. Addition Prop. of Equality 2
F. Multiplication Prop. of Equality \mathbf{I}
G. Substitution Prop.

What is the formula for finding a midpoint of a segment?

$$
\left(\begin{array}{ccc}
a v g & & a v g \\
x & , & y
\end{array}\right)
$$

$$
\begin{gathered}
\text { OR } \\
\left(\frac{\left(x_{1}+x_{2}\right)}{2}, \frac{\left(y_{1}+y_{2}\right)}{2}\right)
\end{gathered}
$$

Find the midpoint of $\overline{A B}$

$$
\begin{gathered}
\mathrm{A}(2,4) \text { and } \mathrm{B}(-5,-2) \\
\left(\frac{(2+-5)}{2}, \frac{(4+-2)}{2}\right) \\
(-1.5,1)
\end{gathered}
$$

A. Perpendicular Lines - make a right angle
B. Collinear Lines - share the same space
C. Parallel Lines - lines in the same plane that never intersect
D. Intersecting Lines - lines that intersect

$$
\angle d^{\circ}, \angle g^{\circ}, \angle e^{\circ}=75^{\circ}
$$

$$
\angle b^{\circ}, \angle c^{\circ}, \angle h^{\circ}, \angle f^{\circ}=105^{\circ}
$$

1. Congruent
2. Congruent
3. Congruent
4. Supplementary
5. Supplementary
6. Supplementary
7. Alternating Exterior Angles
8. Corresponding Angles
9. Alternating Interior Angles
10. Consecutivelnterior Angles

- SSS, ASA, SAS, AAS, SAA will alw ays prove two triangle congruent.
- SSA will only provetwo right triangles congruent (HL).
- AAA does not provetriangles congruent (it does show that they aresimilar)

Ch. 4.9 Name the congruency postulate	Ch. 4.9	
	Nam	he congruency postulate
Ch. 4	Ch. 4	
What is an angle and how is it measured?	Why is a full angle (1 complete rotation) 360° ?	

This is a right triangle. In the right triangles the hypotenuse and a leg are congruent. The postulate is therefore HL.

It comes from the Babylonians (Babylon is an ancient city of Mesopotamia in existence from roughly 2300 B.C. to 100 B.C. located in present day Iraq)

The ancient Babylonians counted in base 60 (sexagesimal system) where as today we count in base 10 (decimal system) and much evidence towards the end of the Babylonian civilizations suggests it was how the Babylonians astronomically divided up their year into $\mathbf{3 6 0}$ days (a reasonable approximations in antiquity of 365.2422 days in a year) and it fit so very nicely into their base 60 system.

Why 12 months?
Why 24 hours?
Why 60 seconds?
Why 7 days?
Why 7 days.
Why 60 minutes?

Two sides and the included angle are given. The postulate is therefore SAS

- $\overline{H G} \cong \overline{H G}$ because of the reflexive property.

So....

- $\Delta \mathrm{FHG} \cong \Delta \mathrm{IHG}$ because of SSS.

- $\overline{O Q} \cong \overline{O Q}$ because of the reflexive property.

So.....

- $\triangle O R Q \cong \triangle$ QPO because of SSA or HL (which only works with right triangles).

- $\angle \mathrm{ABC} \cong \angle \mathrm{DBE}$ because vertical angles are congruent

So.....

- $\triangle \mathrm{ABC} \cong \Delta$ EBD because of SAS.

- $\angle \mathrm{MNL} \cong \angle \mathrm{KJL}$ because alt. int. angles are congruent
- $\angle \mathrm{JKL} \cong \angle$ NML because alt. int. angles are congruent

So.....

- $\Delta \mathrm{MNL} \cong \Delta \mathrm{KJL}$ because of ASA.

Ch. 4.10

Name the congruency postulate.

Ch. 4.10
Which congruency postulate could be used to prove that $\triangle B A C \cong \Delta D E C$?

Ch. 4.10 In which pair of triangles
pictured below could you use the Angle Side Angle postulate (ASA) to prove the triangles are congruent?

List all the congruency postulates.

In pair 4 the side is between the two angles. Therefore only in pair 4 can we use ASA as the congruency postulate.

The two triangles have two congruent triangles and one congruent side. The congruent is between the two angles. The congruency postulate is therefore ASA

For any pair of triangles the following are congruency postulates. SSS, SAS, AAS, ASA

You could use Angle Angle Side In any pair of right triangles we have because $\angle \mathrm{ACB}$ and $\angle \mathrm{DCE}$ are vertical the following postulates angles. HA, HL, and LL

If $A C=10 x+3, w$ hat al gebraic expression would represent the length of DE?

- $D E=5 x+1.5 \mathrm{~b} / \mathrm{c}$ it should be half of the base
What is DE called?
- DE is called a mid-segment of the triangle. A ny segment betw een two midpoints of the sides of a triangle is called a mid-segment. Mid-segments are $1 / 2$ the length of the corr esponding base to which they are also parallel.

If two sides of a triangle are 8 cm and 3 cm , then w hat is the range of values that the $3^{\text {rd }}$ side could be?

$$
\begin{gathered}
8-3<x<8+3 \\
5<x<11
\end{gathered}
$$

Why is it not possible to have a triangle created with lengths $12 \mathrm{~cm}, 5 \mathrm{~cm}$, and 6 cm ?

- If you add the sides 5 and 6 together, the maximum of the third side must be less than 11.
A. A line, segment, or ray that cuts an angle into 2 congruent adjacent angles.
B. A line, segment, or ray through an angle perpendicular to the opposite side.
C. A line, segment, or ray througf an angle and the midpoint of the opposite side.

Which is the biggest side?

- HG becauseit is opposite the biggest angle

Which is the smallest side?

- FG because it is
 opposite the smallest angle

It is the INCENTER created by the ANGLE BISECTORS

It is the point that all sides are perpendicular and equidistant from and the center of a circle that is inscribed inside the triangle.

It is the ORTHOCENTER and it is created by the ALTITUDES of the triangle.

It is the CENTROID created by the MEDIANS.

It is the center of gravity of the triangle.

It is the CIRCUMCENTER and it is created by the PERPENDICULAR BISECTORS

It is the point that is equidistant from all of the triangle's vertices and the center of a circle that circumscribes the triangle.

What makes a polygon regular?

What is the differ ence betw een CONCAVE and CONVEX?

What is the sum of the exterior angles of each convex polygon show n below?

Ch. 5
For which of the following triangles will the formula $a^{2}+b^{2}=c^{2}$ work correctly?

Concave describes a shape that has a 'indentation' in it. More specifically, if a line is able to intersect the edges of a polygon 4 times or more it is concave. (An easy way to remember, if the shape
 makes a 'Cave' then it is concave)

Convex describes a shape that has no indentations. Any line passing through the polygon will intersect the polygon edges no more than twice.

ALL SIDES CONGRUENT

ALL ANGLES CONGRUENT

REGULAR

The triangles must be right triangles.

A. $\mathbf{3 6 0}{ }^{\circ}$
B. $\mathbf{3 6 0}{ }^{\circ}$
C. 360°

A. 180°
B. 540°
C. $\mathbf{3 6 0}{ }^{\circ}$

A. Pentagon (PENTA -5)
B. Hexagon (HEXA - 6)
C. Heptagon (HEPTA - 7)
D. Octagon (OCTA - 8)
A.

$$
\begin{array}{r}
\frac{\operatorname{big} \Delta}{\text { small } \Delta}: \frac{12}{3} \neq \frac{8}{n} \\
24=12 n \\
2=n
\end{array}
$$

$\frac{\operatorname{big} \Delta}{\operatorname{small} \Delta}: \frac{28}{21} \neq \frac{12}{y}$ $252=28 y$
$9=y$
A. Square- all equal sides, all right angles
B. Rectangle - all right angles
C. Rhombus - all equal sides
D. Trapezoid - only 1 set of parallel sides
E. Parallelogram-2 sets of parallel sides
F. Kite - $\mathbf{2}$ sets of consecutive congruent sides

Name all of the properties of a rectangle and its diagonals.

1. All angles are right
2. Opposite Sides are parallel
3. Diagonals bisect each other
4. Opposite Sides are congruent 5 . Diagonals are congruent

5. All angles are right
6. Diagonals bisect each other
7. Opposite Sides are parallel
8. Diagonals are perpendicular
9. All Sides are congruent
10. Diagonals bisect angles
11. Diagonals are congruent

Name all of the properties of a parallelogram and its diagonals.

4. Opposite Sides are parallel
5. Opposite Sides are congruent
6. Opposite Angles are congruent
7. Consecutive Angles are supplementary

4. Opposite angles are congruent

1. Diagonals bisect each other
2. Opposite Sides are parallel
3. Diagonals are perpendicular
4. All Sides are congruent
5. Diagonals bisect angles
6. Consecutive angles are supplementary

Ch. 5.8-5.12
Describe each quadrilateral as many w ays as you can.

Ch. 5.8-5.12
Alw ays True, Sometime True or Never True

1. A rectangle is a parallelogram.
2. A rhombus is a rectangle.
3. A rectangle is a square.
4. A kite is a parallelogram.
5. A trapezoid is a rectangle.
6. A square is a rectangle.
7. A rectangle is concave.
8. An isosceles trapezoid has 3 congruent sides.
9. An isosceles trapezoid has supplementary opposite angles.
10. A rhombus has congruent diagonals
11. A parallelogram's diagonals bisect each other.

Ch. 5.11
Find the mid-segment of the trapezoid.

Ch. 5.8 -
 5.12
 Fill in the Blanks of the Quadrilateral Venn Diagram

Unit 5 - Triangle Inequality Theorem

Which side of the triangle below should be the largest and why? (Base you decision on the provided angle measures)

Which side of the triangle below should be the smallest and why? (Base you decision on the provided angle measures)

Unit 6 - Mutually Exclusive \& Inclusive Events Which of the following pairs of events are Mutually Exclusive and which are Inclusive?

EXTRA: What's the probability of Event 1 OR Event 2?
A. Event 1: Rolling a standard 6 sided number cube to an even number.
Event 2: Rolling the same number cube to an odd number.
B. A Backpack has a red math book, blue science book, red language arts book, and a green social studies book.
Event 1: Randomly picking a red book out of the backpack.
Event 2: Randomly picking a math book out of the same backpack.
C. Event 1: Randomly selecting a red card from a standard deck of 52 cards.
Event 2: Randomly selecting a face card from the same standard deck of cards.

Unit 5 - Exterior Inequality Triangle Theorem

Based on the diagram shown below, tell which of the following statements must be true and which might be false.
A. $m \measuredangle A=150^{\circ}$
B. $\mathrm{m} \measuredangle \mathrm{A}>150^{\circ}$
D. $m \angle B=150^{\circ}$
E. $m \angle B>150^{\circ}$
G. $m \measuredangle A C B=150^{\circ}$
H. $\mathrm{m} \measuredangle \mathrm{ACB}=30^{\circ}$
A C. $\mathrm{m} \measuredangle \mathrm{A}<150^{\circ}$
F. $m \angle B<150^{\circ}$
I. $\mathrm{m} \measuredangle \mathrm{A}+\mathrm{m} \measuredangle \mathrm{B}=150^{\circ}$
J. $m \measuredangle A+m \measuredangle A C B=150^{\circ}$

Unit 6 - Independent \& Dependent Events

Which of the following pairs of events are Independent and which are Dependent?

EXTRA: What's the probability of Event 1 AND Event 2?
A. Event 1: Rolling a white standard 6 sided number cube to the number 2
Event 2: Rolling a red standard 6 sided number cube to an odd number.

B. A bag contains 4 blue marbles and 2 white marbles.

Event 1: Randomly picking a white marble out of the bag first and discarding it (i.e. not replacing it)
Event 2: Randomly picking a blue marble out of the bag second
C. Event 1: Randomly selecting a face card from a standard deck of 52 cards on the first draw and discarding it.
Event 2: Randomly selecting a face card from a standard deck of 52 cards on the second draw.

This is known because the sum of the
This is known because the angles form a linea

since both equations are equal to 180° then, by transitivity:

$$
m \angle A+m \angle B+m \angle A C B
$$

$$
=\mathrm{m} \triangle \mathrm{ACD}+\mathrm{m} \angle \mathrm{ACB}
$$

$$
m \measuredangle A+m \measuredangle B+m \measuredangle A E D
$$

$$
=m \measuredangle A C D+m \angle A E D
$$

$$
m \measuredangle A+m \measuredangle B
$$

$$
=m \angle A C D=150^{\circ}
$$

A. Event 1: Rolling a white standard 6 sided number cube to the number 2 Event 2: Rolling a red standard 6 sided number cube to an odd number. INDEPENDENT because Event 2's outcome is not affected by Event 1 .

$$
\text { EXTRA: } P(E 1 \text { and } E 2)=\frac{1}{6} \cdot \frac{3}{6}=\frac{3}{36}=\frac{1}{12}
$$

B. A bag contains 4 blue marbles and 2 white marbles.

Event 1: Randomly picking a white marble out of the bag first and discarding it (i.e. not replacing it)
Event 2: Randomly picking a blue marble out of the bag second
DEPENDENT because Event 2's outcome is affected by Event 1 .

$$
\text { EXTRA: } P(E 1 \text { and } E 2)=\frac{2}{6} \cdot \frac{4}{5}=\frac{8}{30}=\frac{4}{15}
$$

C. Event 1: Randomly selecting a face card from a standard deck of 52 cards on the first draw and discarding it.
Event 2: Randomly selecting a face card from a standard deck of 52 cards on the second draw.
DEPENDENT because Event 2's outcome is affected by Event 1 .

$$
\text { EXTRA: P(E1 and E2) }=\frac{12}{52} \cdot \frac{11}{51}=\frac{132}{2652}=\frac{11}{221}
$$

Which side of the triangle below should be the largest and why? (Base you decision on the provided angle measures)

The largest side should be side $\overline{A C}$ because it is opposite the largest angle.

Which side of the triangle below should be the smallest and why? (Base you decision on the provided angle measures)

The smallest side should be side $\overline{B C}$ because it is opposite the smallest angle.

A. Event 1: Rolling a standard 6 sided number cube to an even number.
Event 2: Rolling the same number cube to an odd number.

NO "OVERLAP" thus MUTUALLY EXCLUSIVE

B. A Backpack has a red math book, blue science book, r language arts book, and a green social studies book.
Event 1: Randomly picking a red book out of the backpack.
Event 2: Randomly picking a math book out of the same backpack.
"OVERLAP" thus INCLUSIVE
C. Event 1: Randomly selecting a red card from a standard deck of 52 cards. Event 2: Randomly selecting a face card from the same standard deck of cards.
"OVERLAP" thus INCLUSIVE

EXTRA: $\mathrm{P}(\mathrm{E} 1$ or E 2$)=\frac{2}{4}=50 \%$

$$
\text { EXTRA: } \mathrm{P}(\mathrm{E} 1 \text { or } \mathrm{E} 2)=\frac{32}{52}=61.5 \%
$$

At a banquet, a person has a choice of three types of drinks (tea, water, soda). They have a choice of two salads (House, Caesar). They have a choice of 2 main entrées (chicken, beef). Create a TREE DIAGRAM showing all of the possible meals.

What is the probability of flipping 3 coins and having all of them land on tails?

What is the probability of flipping 3 coins and having two coins land on heads? (hint: create a tree diagram and count them)

```
Ch. 6.2-6.3
```

Which of the following demonstrates how to find RANGE, MEAN, MEDIAN, and MODE for the data set $\{\mathbf{3}, 8,11,3,15\}$?
A. $3,8,11,3,15$
B. $3,3,8,14,15$
C. $\frac{3+8+11+3+15}{5}$
D. $15-3$

What is the probability of flipping 3 coins and having all of them land on tails?

What is the probability of flipping 3 coins and having two coins land on heads? (hint: create a tree diagram and count them)

A. Permutation: ordermatters!

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!} \text { (more possibilities) }
$$

B. Combination: order does not matter!

$$
{ }_{n} C_{r}=\frac{n!}{r!(n-r)!}
$$

At a banquet, a person has a choice of three types of drinks (tea, water, soda). They have a choice of two salads (House, Ceaser). They have a choice of 2 main entrées (chicken, beef). Create a TREE DIAGRAM showing all of the possible meals.

A. $3,8,11,3,15$
MODE
C. $\frac{3+8+11+3+15}{5}$
C. $\frac{3+8+11+3+15}{5}$

MEAN
B. $2,3,8,11,15$

MEDIAN
D.

15-3

RANGE

How many students ate at Zaxby's and Mc Donald's?
$6+2=8$

Mc Donald's

How many students ate at Chic-fil-a lasi week?
$2+8+12+15=37$

$$
\text { Ch. } 6.1
$$

Ch. 6.5

In a Valentine's box of candy there were 4 strawberry, 5 orange, and 3 lemon chocolate covered creams. If they all look identical what is the probability of picking one and getting a lemon flavored chocolate?

Ch. 6.6
A) What is random sampling?
B) How can random sampling result in a biased sample?

What is the Expected Value: The school is having a raffle. Each ticket costs \$2.00 and the prize is an IPod worth $\$ 100$. If the school sells 1000 tickets, what is the expected value of you winning?

Ch. 6.7
A) What is a deviation in a data set?
B) What is the deviation for 7 in the given data set?
$1,1,2,4,4,5,7,8$

The sum of the products of each event and its corresponding probability. Winning: \$98 Losing: -\$2

$$
98\left(\frac{1}{1000}\right)+-2\left(\frac{999}{1000}\right)=-\$ 1.90
$$

You would expect to lose $\$ 1.90$ for each ticket you bought!
A) The distance a data point is from the mean.
B) The deviation for $\mathbf{7}$ is $\mathbf{3}$.

$$
\text { Mean }=\frac{1+1+2+4+4+5+7+8}{8}=4
$$

$7-4=3$ units from the mean

In a Valentine's box of candy there were 4 strawberry, 5 orange, and 3 lemon chocolate covered creams. If they all look identical what is the probability of picking one and getting a lemon flavored chocolate?

$$
\frac{\text { Desired } \#}{\text { Total } \#}: \frac{\text { Lemon }}{\text { Total }}=\frac{3}{12}=\frac{1}{4}=0.25=25 \%
$$

A) Every member of the population has an equal chance of being selected.
B) Example of possible answers:

In a survey about the entire school. Randomly surveying students who are leaving math classrooms. Excludes the population of students not taking math classes.

Unit 6 - Conditional Probability

A. Given that there are a total of 20 students in a mathematics classroom. 12 are males and 8 are female students. A student in the class is randomly selected to win piece of candy. The teacher draws a name and says that it is a Girl's name.

- Knowing this extra information, what is the probability that a student from the class named Emily has won the prize?
- Knowing this extra information, what is the probability that a student from the class named Chuck has won the prize?
B. A single standard number cube is rolled. Determine:
- $\mathrm{P}(6 \mid$ the outcome is even $)$
- P (the outcome is odd | the outcome is greater than 3)
C. A single random card is drawn from a standard deck of 52 cards.
- P (Queen \mid Face Card)
- $\mathrm{P}(8$ of hearts | Red Card $)$

Unit 6-Mean Deviation
A. Explain what Mean Deviation Measures.
B. Given that $\overline{\mathrm{x}}=10$ for the following data set, explain how to calculate the mean deviation.

DATA	???	$? ? ?$
13		
9		
7		
11		

Unit 6 - Median \& Quartiles

What is the Q_{1}, the Median, and Q_{3} for the
following data sets? (Extra: Interquartile Range)
A. 5, 8, 10, 15, 16, 22, 30
B. $22,30,44,61,65,70,77,80,90$
C. $15,20,22,30$

A. - Knowing this extra information, what is the probability that a student from the class named Emily has won the prize?
Assuming Emily is a girl and we know the winner is a girl. Then, the probability of her still winning is $1 / 8$

- Knowing this extra information, what is the probability that a student from the class named Chuck has won the prize?
Assuming Chuck is a boy and we know the winner is a girl. Then, the probability of him winning is 0 (i.e. he can't be the winner)
- $\quad P(6 \mid$ the outcome is even)
B. Assuming we know the outcome is an even number then it must be either $\mathbf{2 , 4 , 6}$. So, the probability of it being 6 is $1 / 3$.
- $\quad P($ the outcome is odd \mid the outcome is greater than 3)

Assuming we know the outcome is greater than 3 then it must be either $\mathbf{4 , 5 , 6}$. So, the probability of it being odd is $1 / 3$.

- \quad P(Queen \mid Face Card)

Assuming we know the outcome is a face card then it must be one of 12 possible cards. So, the probability of it being odd is $1 / 3$.

- $\quad P(8$ of hearts \mid Red Card $)=1 / 24=4.2 \%$
A. Explain what Mean Deviation Measures.

Mean Deviation is a measure of variability (or spread).
Specifically, it is the average of the distances that each data point is away from the mean.
B. Given that $\bar{X}=10$ for the following data set, explain how to calculate the mean deviation.

DATA	DIFFERENCES	ABS. Value	
13	$13-10=\mathbf{3}$	$\|3\|=\mathbf{3}$	Mean $=3+1+3+1$
9	$9-10=\mathbf{- 1}$	$\|-1\|=\mathbf{1}$	Deviation
7	$7-10=\mathbf{- 3}$	$\|-3\|=\mathbf{3}$	Mean 7
11	$11-10=\mathbf{1}$	$\|-1\|=\mathbf{1}$	

