Resource: http://www.mathsisfun.com/algebra/definitions.html

Parts of an Equation

Here we have an equation that says $4 x-7$ equals 5 , and all its parts:

A Variable is a symbol for a number we don't know yet. It is usually a letter like x or y .

A number on its own is called a Constant.

A Coefficient is a number used to multiply a variable ($4 x$ means 4 times x, so 4 is a coefficient)

An Operator is a symbol (such as,$+ x$, etc) that represents an operation (ie you want to do something with the values).

A Term is either a single number or a variable, or numbers and variables multiplied together.

An Expression is a group of terms (the terms are separated by + or - signs)

So, now we can say things like "that expression has only two terms", or "the second term is a constant", or even "are you sure the coefficient is really 4?"

Exponents

The exponent (such as the 2 in x^{2}) says how many times to use
 the value in a multiplication.

Examples:
$8^{2}=8 \times 8=64$
$\mathbf{y}^{3}=\mathbf{y} \times \mathbf{y} \times \mathbf{y}$

$$
y^{2} z=y \times y \times z
$$

Exponents make it easier to write and use many multiplications

Example: $\mathbf{y}^{\mathbf{4}} \mathbf{z}^{\mathbf{2}}$ is easier than $\mathbf{y} \times \mathbf{y} \times \mathbf{y} \times \mathbf{y} \times \mathbf{z} \times \mathbf{z}$, or even $\mathbf{y y y y z z}$

Polynomial

Example of a Polynomial: $\mathbf{3} \mathbf{x}^{\mathbf{2}}+\mathbf{x - 2}$
A polynomial can have constants, variables and the exponents $\mathbf{0 , 1 , 2 , 3}, \ldots$
And they can be combined using addition, subtraction and multiplication, ... but not division!

There are special names for polynomials with 1,2 or 3 terms:

$$
\begin{array}{ccc}
3 x y^{2} & 5 x-1 & 3 x+5 y^{2}-3 \\
\text { Monomial }(1 \text { term }) & \text { Binomial (2 terms) } & \text { Trinomial (3 terms) }
\end{array}
$$

Like Terms

Like Terms are terms whose variables (and their exponents such as the 2 in x^{2}) are the same.
In other words, terms that are "like" each other. (Note: the coefficients can be different)

Example:

$$
(1 / 3) x y^{2} \quad-2 x y^{2} \quad 6 x y^{2}
$$

Are all like terms because the variables are all $\mathbf{x} \mathbf{y}^{\mathbf{2}}$

